9.01 Robotic light touch support during locomotion in balance impaired humans (ROLITOS)

Research

In clinical settings, caregivers provide manual support during locomotion to patients with impaired body balance. Thus, interpersonal manual support represents an ecologically valid and effective strategy for controlling a patients' fall risk in dynamic postural activities.

From a therapeutic point of view, however, restricting patient's movement degrees of freedom by grasping his body to support his weight has to be considered inadequate for the purpose of practicing own control of body balance. A more promising strategy is balance support provided in a 'light touch' fashion, for example by lightly resting a hand on the back or shoulder of a patient without taking patient's weight.

We like to ask which are the qualities that make an expert healthcare provider so efficient in the provision of adaptive manual balance support? We believe the answer is associated with the ability to anticipate a patient's dynamics. The scientific aim of the research project is to improve the understanding of interpersonal dynamics of light touch in general and the caregiver-patient interaction during light interpersonal touch stabilisation in particular. Our engineering aim is the translation of the principles of human-to-human interpersonal coordination for light tactile balance support into a robotic solution.

Major outcomes will be measures of the contact receiver's postural stability and interpersonal coordination with the provider but also autonomic measures of the receiver's state anxiety of falling. The latter will express human acceptance of the robotic balance support.

Publications

Team

Project team leader

Ferdinand Tusker
Chair of Human Movement Science

Doctoral researcher

Saskia Steinl
Chair of Human Movement Science

Doctoral researcher

David Kaulmann
Chair of Human Movement Science

Principal investigator

Professor Joachim Hermsdörfer
Chair of Human Movement Science

Principal investigator

Professor Dongheui Lee
Dynamic Human-Robot-Interaction for Automation Systems