4.02 Nanoscale control of oxide interfaces

Research

Layered oxide materials exhibit an intriguing interplay between spin, charge, and orbital degrees of freedom. Notably the properties of cuprates can be tuned by meticulous doping and structural control to an exotic superconducting state, or an antiferromagnetic insulator. Such phenomena are  of strong current interest for the development of functional complex systems and low-dimensional nanostructures. The detailed understanding and tuning of the interface properties is of paramount importance to master such novel quantum materials.

Here we combine expertise in material physics with nanoscale science to comprehensively characterize and engineer the intricate surfaces of transition metal oxides in an interdisciplinary approach. Both space-averaging techniques and atomic resolution scanning tunneling microscopy are employed to directly explore their electronic properties. We address the prominent role of topological or chemical impurities at the nanoscale by tunneling spectroscopy, and then seek to deliberately modify the interfaces electronic nature through the in situ deposition of atoms and functional molecules.

Publications

Krenner, W. et al.: "Unraveling the Hierarchic Formation of Open-porous Bimolecular Networks", 2012.

Krenner, W. et al.: "Uniform Pi-System Alignment in Thin Films of Template-Grown Dicarbonitrile-Oligophenyls”, 2011.

Krenner, W. et al.: "Positioning of Single Co Atoms Steered by a Self-Assembled Organic Molecular Template", 2011.

Krenner, W. et al.: "Hierarchically Organized Bimolecular Ladder Network Exhibiting Guided One-Dimensional Diffusion", 2011.

Krenner, W. et al.: "Tunable quantum dot arrays formed from self-assembled metal-organic networks”, 2011.

Krenner, W. et al.: "Surface-Confined Self-Assembly of Di-carbonitrile Polyphenyls”, 2011.

Krenner, W. et al.: "Rotational and constitutional nynamics of caged supramolecules”, 2010.

Krenner, W. et al.: "Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagomé network”, 2009.

Team

Project team leader

Prof. Dr. Johannes Barth
Chair of Molecular Nanoscience & Chemical Physics of Interfaces

Doctoral researcher

Dr. rer. nat. Wolfgang Krenner
Chair of Molecular Nanoscience & Chemical Physics of Interfaces

Principal investigator

Prof. Dr. Johannes Barth
Chair of Molecular Nanoscience & Chemical Physics of Interfaces

 

Principal investigator

Professor Douglas A. Bonn
Department of Physics & Astronomy, UBC