7.04 Hybrid Photonic Nanomaterials

           Virginia Tech | ICTAS


In this project we develop new methods to enhance and control the interaction between light and matter in metal-dielectric nanomaterials. Such functional nanomaterials facilitate the strong concentration of light below the optical wavelength via the optical excitation of plasmons (oscillations of free electrons in the metal) and are fabricated by complementary methods, including electron beam lithography and additive manufacturing. When positioned flourescent organic molecules, flurophores and semiconductor nanostructures are combined with such metallic nanomaterials, they provide strong potential for a wide variety of applications ranging from highly efficient light emitters and photovoltaic devices to nanoscale devices for information processing.


A. A. Lyamkina and K. Schraml et al.: "Monolithically integrated single quantum dots coupled to bowtie nanoantennas" in Optics Express, Volume 24, Number 25, Page 28936, 2016.

A. Regler, K. Schraml et al.: „Emission redistribution from a quantum dot-bowtie nanoantenna” in Journal of Nanophotonics, Volume 10, Number 3, Page 033509, 2016.

K. Schraml and A. Regler et al.: „Metamorphic plasmonic nanoantennas for self-enhanced nonlinear light generation“ in Optica, Volume 3, Number 12, Page 1453, 2016.

M. Kaniber, K. Schraml et al.: “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method” in Scientific Reports, Volume 6, Page 23203, 2016.

K. Schraml et al.: "Linear and Nonlinear Response of Lithographically Defined Plasmonic Nanoantennas" in Proceedings of SPIE, Volume 9371, Page 93711D-1, 2015.

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, "Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters", Nanotechnology, Vol 25, 2014.

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, "Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots", Journal of Applied Physics, Vol 116, 2014.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, "Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate", Phys. Rev. B, Vol 90, 2014.

G.Bracher, K.Schraml, M.Blauth, C.Jakubeit, K.Müller, G.Koblmüller, M.Bichler, M.Kaniber and J.J. Finley, "Proceedings of SPIE - Coupling of guided surface plasmon polaritons to proximal self-assembled InGaAs Quantum Dots", SPIE, 2012.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber and J.J. Finley, "Direct measurements of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs" , Journal of Applied Physics, Vol. 110 No. 12, 2011.


Project team leader

Dr. Michael Kaniber
TUM Department of Physics


Dr. rer. nat. Konrad Schraml
TUM Walter Schottky Institute

Principal investigator

Professor Jonathan Finley
TUM Walter Schottky Institute

Principal investigator

Professor Tom Campbell
VirginiaTech | ICTAS