9.04 Advanced III-V semiconductor nanowire-based electronics (NW-Electronics)

          Northwestern University, USA

Research

This research program will develop an innovative platform for novel nanoelectronic devicescapable of replacing conventional CMOS-based technology. Using III-V semiconductor nanowires (NW) our prime goal is to realize very high-performance heterojunction tunneling fieldeffect transistors (TFET) and surround-gate FETs for future strongly scaled, energy-efficientand high-speed logic switches. Essential for this success will be a detailed understanding ofthe physical mechanisms of charge carrier transport in these 1 D-like nanostructures, as well as major improvements in material engineering and device fabrication. We will realize this by growth of advanced NW heterostructures via ultrahigh-purity methods, state-of-the-art nanofabrication into gated FET devices and characterization of the nanoscale charge carrier transportby low-noise transport measurements and ultrafast pump-probe techniques. The transportand device properties will be directly correlated with atomic-scale structural analysis viaunique atom-probe tomography metrology to establish important structure-function relationshipsrequired for advancement of device performance. This project draws upon the distinct core competences of leading groups in semiconductor NWs and their devices via a strongly multidisciplinary approach including Physics (WSI-TUM), Materials Science (NorthwesternUniversity) and Electrical Engineering (IBM Zurich).

Publications

 

J. Becker, M. O. Hill, M. Sonner, M. Döblinger, A. Hirler, H. Riedl, J. J. Finley, L. J. Lauhon, and G. Koblmüller: "Correlated chemical and electrically active dopant analysis in catalyst-free Si-doped InAs nanowires", 2018.

D. Irber, J. Seidl, D. J. Carrad, J. Becker, N. Jeon, B. Loitsch, J. Winnerl, S. Matich, M. Döblinger, Y. Tang, S. Morkötter, G. Abstreiter, J. J. Finley, M. Grayson, L. J. Lauhon, and G. Koblmüller: “Quantum transport and sub-band structure of modulation-doped GaAs/AlAs core-superlattice nanowires“, 2017.

B. Loitsch, D. Rudolph, S. Morkötter, M. Döblinger, G. Grimaldi, L. Hanschke, S. Matich, E. Parzinger, U. Wurstbauer, G. Abstreiter, J. J. Finley, and G. Koblmüller: “Tunable quantum confinement in ultrathin, optically active semiconductor nanowires via reverse reaction growth”, 2015.

S. Morkötter, N. Jeon, D. Rudolph, S. Matich, M. Döblinger, D. Spirkoska, E. Hoffman, J. J. Finley, L. J. Lauhon, G. Abstreiter, and G. Koblmüller: “Demonstration of confined electron gas and steep-slope behavior in delta-doped GaAs-AlGaAs core-shell nanowire transistors“, 2015.

N. Jeon, B. Loitsch, S. Morkötter, G. Abstreiter, J. J. Finley, H. J. Krenner, G. Koblmüller, and L. J. Lauhon: “Alloy fluctuations act as quantum dot-like emitters in GaAs-AlGaAs core-shell nanowires“, 2015.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner: “Ultrafast photodetection in the quantum wells of single AlGaAs/GaAs-based nanowires“, 2015.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner: “Photocurrents in a single InAs nanowire/silicon heterojunction“,2015.

B. Loitsch, J. Winnerl, G. Grimaldi, J. Wierzbowski, D. Rudolph, S. Morkötter, M. Döblinger, G. Abstreiter, G. Koblmüller, and J. J. Finley: “Crystal phase quantum dots in the ultrathin core of GaAs-AlGaAs core-shell nanowires“, 2015.

B. Loitsch, N. Jeon, M. Döblinger, J. Winnerl, E. Parzinger, S. Matich, U. Wurstbauer, H. Riedl, G. Abstreiter, J. J. Finley, L. J. Lauhon, and G. Koblmüller: “Suppression of alloy fluctuations in GaAs-AlGaAs core-shell nanowires“, 2015.

Team

Project team leader

Dr. Gregor Koblmüller
Chair of Semiconductor Quantum Nanomaterials (E24)

Doctoral researcher

Nari Jeon
Northwestern University

Doctoral researcher/Alumnus

Dr. Bernhard Loitsch
Chair for Semiconductor Nanostructures and Quantum Systems (E24)

Doctoral researcher

Megan Olivia Hill
Northwestern University

Principal investigator

Professor Alexander Holleitner
Walter Schottky Institute, Holleitner Group

Principal investigator

Professor Lincoln Lauhon
Department Materials Science and Engineering, Northwestern University